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Supplementary Figures  

 

 
 
Supplementary Figure 1. RL models tested. Six model variants were tested. a-f For 
each model, from left to right, the model's state space is represented, followed by the 
delivered reward (r), which is compared to the expectation (value V of the state or belief 



 
 

 3 

state) to compute the RPE (δ). The 4th column shows the theoretical RPE, which is 
centered around 0. The main distinction between the standard RL models (a, b) and the 
belief state models (c-f) is the state representation, with a single state in the case of the 
standard RL model due to the ambiguity of the odor. g-l The last two columns show the 
theoretical value and RPE on trial 2, obtained by fitting each model's RPE to the GCaMP  
responses (see parameters in Supplementary Table 1) using linear regression. This 
regression accounted for the fact that in our task most reward responses were positive, 
likely due to temporal uncertainty1,2. Only using belief states allows reproducing the non-
monotonic pattern of dopamine RPEs observed on trial 2. a Standard RL with a fixed 
initial value for the state at 0.5 (V, averaged between the trained states s1 and s2), leading 
to a monotonically increasing RPE. b Variant of the standard RL model with free initial 
values for the state depending on the previous block, following s1 (value V1) and s2 (value 
V2). The averaged value is indicated by a black doted line. This also leads to a 
monotonically increasing RPE, only the intercept is affected. c RL with belief state using 
a fixed initial prior for all states' likelihood at 0.5 (p). The value of the belief state 
depends on the reward size, with smaller rewards being more likely to being similar to s1, 
resulting in a low value, and with bigger rewards being more likely to being similar to s2, 
resulting in a high value. This expectation function predicts a non-monotonic pattern in 
RPEs when compared to the delivered reward. d Variant of the RL with belief state using 
a free initial prior following s1 (prior p1), constraining both priors to sum to 1 - notice the 
averaged prior in black dotted line identical to the prior in c. e Variant of the RL with 
belief state using two free initial priors following s1 (prior p1) and following s2 (prior p2). 
Notice how this allows the averaged prior function in black dotted line to be biased 
towards being in s2 in this example, leading to an asymmetric non-monotonic pattern of 
prediction error. f Variant of the RL with belief state using three states, one additional 
one for intermediate rewards (s3), and three initial free priors following s1 (prior p1), 
following s2 (prior p2) and for intermediate rewards (prior p3).   
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Supplementary Figure 2. Behavior and fibre photometry recordings of VTA 
dopamine neurons in classical conditioning. We presented 3 odors, which predicted the 
delivery of water one second later with either 90% (red), 50% (green) or 0% (black) 
probability. Unpredicted water was delivered on 10% of trials. a On unpredicted water 
delivery trials, the mouse licked on water delivery. b, c For odors predicting reward with 
90% or 50% probability, the mouse showed anticipatory licking after odor presentation 
proportional to the probability of reward delivery. d-f The activity of dopamine neurons 
on reward delivery showed a canonical RPE pattern: strongest response to fully 
unpredicted reward (d), decreased responses to predicted rewards (e) and dip at reward 
omission (f). Dopamine neurons activity at cue onset was proportional to the value of the 
cue (e, f). Data represents mean ± s.e.m. n indicates number of trials.   
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Supplementary Figure 3. Anticipatory licking and dopamine activity at block start. 
a Anticipatory licking at block start. b Anticipatory licking quantified over 1 second bins. 
c GCaMP activity at block start. d GCaMP activity quantified over 1 second bins. Data is 
separated based on the previous block (s1 and s2). The sound cue signals block start and is 
followed by the odor cue for trial 1. Data represents mean ± s.e.m. * p > 0.05 for post-hoc 
paired Wilcoxon tests. n = 11 mice 
 
 
  



 
 

 6 

 

 
 
 
Supplementary Figure 4. Number of trial types mice experienced over the whole 
training. For each volume, the average number of trials (with s.e.m.) experienced by 
each mouse is indicated. Each intermediate reward (2 to 8 µL) was experienced less than 
0.5 % of the number of training trials each mouse experienced. n = 11 mice.   
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Supplementary Figure 5. Dopamine responses on trials 1 and 2 plotted separately 
based on recording conditions. a, d Dopamine responses in mice expressing 
transgenetically GCaMP6f in DAT-positive neurons and recorded from VTA cell bodies 
(n = 5). b, e Dopamine responses in mice expressing GCaMP6f through a viral construct 
in DAT-positive neurons and recorded from VTA cell bodies (n = 2). c, f Dopamine 
responses in mice expressing GCaMP6f through a viral construct in DAT-positive 
neurons and recorded from dopamine neuron terminals in the ventral striatum (n = 4). 
The upper row (a - c) shows the average across mice, while the lower row (d - f) shows 
the same average after normalizing within mice through min-max normalization using 
trial 1's response as reference for the minimum and maximum values. This normalization 
corrects for the different amplitudes in GCaMP signals across the different recording 
conditions, but preserves the features observed in each recording condition. Note that the 
monotonicity and non-monotonicity of the responses in trials 1 and 2, respectively, are 
observed in each recording condition (a - c). Data represents mean ± s.e.m. 
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Supplementary Figure 6. Data and model fits on peak dopamine response. 
Quantifying the peak dF/F response following reward delivery recapitulates the results 
obtained by quantifying the average response over one second post reward delivery. a, d 
Dopamine responses on trials 1 and 2 for mice expressing transgenetically GCaMP6f in 
DAT-positive neurons and recorded from VTA cell bodies (n = 5). b, e Dopamine 
responses on trials 1 and 2 for mice expressing GCaMP6f through a viral construct in 
DAT-positive neurons and recorded from VTA cell bodies (n = 2). c, f Dopamine 
responses on trials 1 and 2 for mice expressing GCaMP6f through a viral construct in 
DAT-positive neurons and recorded from dopamine neuron terminals in the ventral 
striatum (n = 4). The upper row (a - c) shows the average across mice, while the lower 
row (d - f) shows the same average after normalizing each mouse's signal by min-max 
normalization. This normalization corrects for the different amplitudes in GCaMP signals 
across the different recording conditions, but preserves the features observed in each 
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recording condition. Note that the monoticity and non-monoticity of the responses in 
trials 1 and 2, respectively, are observed in each recording condition (a - c). g Normalized 
dopamine responses for all mice on trials 1 to 5. h Best fit by standard and with belief 
state reinforcement learning models. Data represents mean ± s.e.m. 
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Supplementary Figure 7. Polynomial fits to dopamine response and behavior for 
trials 1 and 2. Polynomials of degree 1 (left), 2 (middle) or 3 (right) were fit to the data 
and the corresponding r2 and adjusted r2, corrected for the degree of the polynomial, were 
computed. The highest adjusted r2 is highlighted in bold. a Dopamine reward responses 
on trial 1 were best fit by a linear function. b Dopamine reward responses on trial 2 were 
best fit by a cubic function. c Change in anticipatory licking from trial 1 to trial 2 was 
best fit by a cubic function although the linear function also provided a good fit (r2 = 
0.94). d Change in anticipatory licking from trial 2 to trial 3 was best fit by the cubic 
function.   
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Supplementary Figure 8. Dopamine reward responses and model fits across trials. a 
Standard and belief state reinforcement learning models were simulated using the average 
parameters across mice (Supplementary Table 1). b Sum of squared errors between 
simulations from both models. Trial 2 shows the strongest difference. c Normalized 
dopamine responses to rewards and model fits to dopamine responses of the RL models 
without or with belief states, with two free initial values or priors. d Examples of 
individual dopamine responses. Data represents mean ± s.e.m. 
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Supplementary Figure 9. Dopamine activity using different baseline correction 
methods. a Trial level baseline correction, using 1 second before odor onset as baseline. 
b Block level baseline correction, using 1 second before sound onset as baseline. c 
Running median baseline correction, using the median over a 60 second period centred 
on the current data point analysed as baseline. Data represents mean ± s.e.m. n = 11 mice  
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Supplementary Figure 10. Dopamine neuron activity and differential anticipatory 
licking within blocks. a Dopamine neuron activity on reward delivery for trials 2 to 5 
(top) and corresponding differential lick rate (bottom). Data represent mean ± s.e.m. b 
Correlation analysis between dopamine neuron activity on trial t and lick rate change 
from trial t to trial t+1 within blocks. Each point represents an individual trial. n = 11  
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Supplementary Figure 11. Dopamine cue (CS) responses. a Normalized dopamine 
responses to odor presentation across trials. n = 11, data represents mean ± s.e.m. b 
Correlation between dopamine CS responses and estimated model values. The value 
functions from either model fits were positively correlated to the mice’s anticipatory 
licking, but no model provided a better fit (signed rank test: p = 0.32).   
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Supplementary Tables  

 
 
Supplementary Table 1. Best-fitting parameter estimates shown as mean across 
mice and model comparison. Bayesian information criterion (BIC) and exceedance 
probabilities3,4 both favoured the RL model with belief states with two initial free priors 
over other models. The best values are highlighted in bold.  
 

Number of 
parameters Parameters Parameter 

estimates
Log-

likelihood BIC Exceedance 
probability

Protected 
exceedance 
probability

1 state, 1 fixed 
initial value (0.5) 1 learning rate (α) 0.257 -30.785 65.66 0.0809 0.1403

learning rate (α) 0.3

value following s1 (V1) 0.0077

value following s2 (V2) 0.357

learning rate (α) 0.0798

sensory noise variance 
(σ) 0.425

learning rate (α) 0.279

sensory noise variance 
(σ) 0.234

prior following s1 (p1) 
(with prior following s2 

p2=1-p1)
0.959

learning rate (α) 0.261

sensory noise variance 
(σ) 0.24

prior following s1 (p1) 0.989

prior following s2 (p2) 0.537

learning rate (α) 0.0829

sensory noise variance 
(σ) 0.166

prior following s1 (p1) 0.891

prior following s2 (p2) 0.0176

prior for intermediate 
rewards (p3) 

0.314

Model

Standard 
reinforcement 

learning
1 state, 2 initial 

values depending 
on previous block 
(model in Fig. 3)

3 -24.755 0.2989 0.2073

Reinforcement 
learning with 
belief state

2 states, 1 fixed 
initial prior (0.5) 2 -33.452 75.09 0.0085 0.118

2 states, 1 initial 
prior 

61.79

3 -26.927 66.13 0.0214 0.122

0.2726

3 states, 2 initial 
priors depending 
on the previous 
block and 1 for 

the intermediate 
states

5 -22.113 64.69 0.0791 0.1397

2 states, 2 initial 
priors depending 
on previous block 
(model in Fig. 3)

4 -22.174 60.72 0.5112



 
 

 17 

 
 

Supplementary Table 2. Best-fitting parameter estimates shown as mean across 
mice and model comparison on peak GCaMP response. Bayesian information 
criterion (BIC) and exceedance probabilities3,4 both favoured the RL model with belief 
states with two initial free priors over other models. The best values are highlighted in 
bold.  
 
  

Number of 
parameters Parameters Parameter 

estimates
Log-

likelihood BIC Exceedance 
probability

Protected 
exceedance 
probability

1 state, 1 fixed 
initial value (0.5) 1 learning rate (α) 0.257 -57.4472 118.989 0.0379 0.1025

learning rate (α) 0.2915

value following s1 (V1) 0.0063

value following s2 (V2) 0.3383

learning rate (α) 0.0282

sensory noise variance 
(σ) 0.4597

learning rate (α) 0.2711

sensory noise variance 
(σ) 0.239

prior following s1 (p1) 
(with prior following s2 

p2=1-p1)
0.948

learning rate (α) 0.27

sensory noise variance 
(σ) 0.315

prior following s1 (p1) 0.973

prior following s2 (p2) 0.556

learning rate (α) 0.046

sensory noise variance 
(σ) 0.156

prior following s1 (p1) 0.934

prior following s2 (p2) 0.0026

prior for intermediate 
rewards (p3) 

0.389

Model

Standard 
reinforcement 

learning
1 state, 2 initial 

values depending 
on previous block 
(model in Fig. 3)

3 -50.6742 0.245

Reinforcement 
learning with 
belief state

2 states, 1 fixed 
initial prior (0.5) 2 -59.8138 0.0064 0.0868

2 states, 1 initial 
prior 

0.3238

3 -52.9573 0.0113 0.0893

0.3713

3 states, 2 initial 
priors depending 
on the previous 
block and 1 for 

the intermediate 
states

5 -48.2943 0.0432 0.1051

2 states, 2 initial 
priors depending 
on previous block 
(model in Fig. 3)

4 -46.5757 0.5774

113.631

127.816

118.197

109.529

117.06
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